
SMALLEST FLOW RATE WITH A SPECIFIED AREA OF THE FILTRATION REGION 

M. M. Alimov and E. V. Skvortsov UDC 532.546 

The forms of regions with a fixed area realizing the minimum filtrational flow 
rate or total heat flux are found. 

Plane steady filtration of a homogeneous incompressible liquid in a homogeneous unde- 
formable porous medium according to a linear or power law is considered. The filtration 
region is an enlarged stream tube with input and output of the filtrational flux at bound- 
aries. The area of the region and the position of the inlet are specified and the position 
of the output section (curve r) is unknown and determined from the condition of minimum 
filtrational flow rate. Thereby the solution of the problem gives the guaranteed flow 
rate with specified area. At the same time, the analogy between filtration and heat con- 
duction means that, in a number of cases, this problem may be regarded as the problem of 
finding an optimal (in a certain sense) form of the cross section of the heat-source 
insulation (for example, ensuring a minimum of heat losses with a specified weight of in- 
sulation). 

In [i, 2], the problem described in terms of linear-filtration theory was reduced to 
a boundary problem with a free boundary F at which the modulus of the velocity v is cons- 
tant. An analytical solution was obtained for some model examples. 

It is shown below that the constraints on the class of solvable problems may be relaxed. 
This allows the investigation of applied problems of filtration and heat-conduction theories 
to be expanded. 

i. Filtration from an Elliptical Supply Contour 

Consider linear filtration from the supply contour AD of elliptical form to a line of 
constant pressure difference F (see Fig. la, where a quarter of the flow region G with 
boundary ABCD is shown). Suppose that the pressure difference h = 0 at AD, h = -H at F, 
and the area of the region is S. It is required to find the form of curve F such that a 
minimum of the filtrational flow rate is realized. According to the foregoing, the follow- 
ing boundary condition is obtained 

Ah=:O, x, U EG; hIAD - - 0 ;  hl r : = - H ,  O/z [ _ .  
-On ir L~~ 

3h _ dh I = O. 
On CD On IXB 

(i) 

Introducing the region D u of the auxiliary complex variable u = $ + i~, a rectangle 
with the vertices A(0, 0), B(I, 0), C(I, ia), D(0, ia), letting z = x + iy, r = -h, W(u) = 

+ i~, and using the analytical function ~(u) = in(v0dz/dW) = in(v0/v) + ie, it is possible 
to write dz in the form (see [3], for example) 

dz---- 1---~( d~W l e x p [ ~ ( u ) ] d u .  (2) 
U 0 ~ aU l 

Comparison of the regions of variation of u and the complex potential W(u) leads to the 
conclusion that dW/du = H. To find the function ~(u) = v + is, the corresponding boundary 
conditions must first be established in D u. It is evident from a comparison of Fig. 1 and 
the form of the region D u and also from the condition that v = v 0 on F that 

SlAB = 0 ,  sIDc ~ ~/2, WIBc -= O. (3 )  
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Fig. i. Diagram of the flow from an elliptical 
supply contour (a) and from the source to the 
sink (b). 
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Fig. 2. Form of the filtration region (a) and 
dependence of the minimum flow rate on its area 
(b): a) boundary of ellipse with ~ = 0.9 (i), 

= 1.5, 2, 3, 5, i0 (2-6); b) with ~ = i, 0.9, 
0 ( 7 - 9 ) .  

To obtain the boundary condition at AD, it is taken into account that the curvature 
of the ellipse is specified 

K(0) = & ( 1  - -  ~2 sinZ 0) a/2. 

Using the procedure well known in jet theory [3], the form of the required boundary condi- 
tion on AD is found 

d---2-~ == M [1 - -  ~2 sin 2 e (~)l a/2 exp [v (~)], (4) 
dn 

where M = H/(v0R). Now the boundary problem for the function ~(u) with the conditions 
in Eqs. (3) and (4) must be solved. Its method of solution was described in [3] (see also 
[4]). Omitting the details, the result is 

(u) = 2 ~  = a ' 

w h e r e  t h e  c o e f f i c i e n t s  c k a r e  d e t e r m i n e d  by  t h e  i t e r a t i v e  m e t h o d  f r o m  t h e  f o r m u l a  

':" t' �9 01) cos a,1, : - -  i * (n) dn,  

( 5 )  

~I) 0l) = 

1 - -  ~t s ,n  [ - ~  n 4" ~ c,~ ch s in  
z ~  ~ ~ / 

k = !  

Substituting Eq. (5) into Eq. (2) and integrating under the condition that z(0) = 0, 
z = z(u) is found and, in particular, the equation of curve F. The solution of the problem 
will depend on the parameter a, which is related to the specified area S of the flow re- 
gion. This relation may be found by taking account of Eq. (2) and the well-known relation 

C'('l dz 12 
S = j j ~-~u I d~dT1. 

D u | ! 
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TABLE i. Dimensionless Values of the Flow Rate and the Area 

of the Region 

Curve 
number 

$ 

o15 
2 

q/vo l 

5,69 
7,29 
9,28 

I Curve 
S /1~ number 

3,01 1] 4 4,49 65 
6,96 

S 

0,5 

q/vol S/I s 

11,9 5,44 
17,5 11,4 
24,3 23,7 
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Fig. 3. Form of the filtration region (a) 
and dependence of the minimum flow rate on 
its area (b). The notation in (a) is as in 
Fig. 2; for (b): s = 0.5 (7), 1 (8), and 2 
(9). 

Numerical results by these formulas lead to the results in Fig. 2. It is evident that at 
small a, i.e., small flow rates at fixed pressure difference, the desired boundary is close 
to the supply contour, and it tends to a circle with its center at the coordinate origin with 
increase in a. When U = 0, the results obtained lead to the obvious solution for the case 
when the elliptical supply contour becomes circular; when ~ = i, the ellipse turns into a seg- 
ment of the real axis of length 2c and the solution coincides with the analytical data for 
filtration from a rectilinear slit to the desired boundary of constant pressure difference 

[2]. 

The well-known analogy between steady processes of filtration and heat conduction allows 
a correspondence to be established between the modulus of the velocity and the heat flux, be- 
tween the potential and the temperature, and between the liquid flow rate and the total heat 
flux. Then the results obtained may be interpreted as finding the optical form of the heat- 
source insulation in the form of an elliptical tube or a wire of elliptical cross sections 
ensuring the minimum heat losses at a fixed weight of the insulation. At the same time, with 
a fixed total heat flux and the given cross section of the insulation, its weight is a mini- 
mum. 

The approach here outlined may also be used in solving other problems of filtration and 
heat conduction with unknown boundaries, for example, finding optimal insulation of two 
tubes or multiple-core wire. 

2. Filtration According to a Power Law 

Suppose that liquid filtration occurs according to a power law 

V h = - - C v S - l v ,  

where C is a constant and s > 0. According to the theory of nonlinear filtration (see [5], 
for example), a second-order linear differential equation which the current function ~(v, 0) 
satisfies may be written, introducing the locus velocity variables v and O 

0~ 02~ 
v 2 ~ + s v  . . , i s  = 0 .  (6) 

Ov a Ov 00 z 
The s o l u t i o n  o f  t h e  f o l l o w i n g  prob lem i s  now o b t a i n e d .  Suppose t h a t  a l i q u i d  f i l t e r s  

from t h e  h e a t e r  b o r e h o l e  t o  t h e  o p e r a t i o n a l  b o r e h o l e ,  and t h e  c o r r e s p o n d i n g  f l ow r a t e s  a r e  
q and -q. For convenience of the analysis, the boreholes are simulated by a point source 
and sink with the same flow rates as the boreholes. Where necessary, after solving this 
problem, the corresponding results for the formulation of the problem with two boreholes 
may be obtained by drawing circles of small radius with centers at the source and the sink 
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and assuming that the pressure (difference) there is constant. 

The flow pattern is assumed to be symmetric relative to the x and y axes. The flow 
region is bounded by the supply contour h = 0, and its form such that the filtrational 
flow rate q is a minimum for specified area of the region is found. According to the for- 
mulation of the problem, there is an additional condition v = v 0 at the supply contour F 
(Fig. ib). The solution of Eq. (6) must be found in the region corresponding to the flow 
region in the 8, v plane. The method of conversion to the locus plane of the velocity is 
well known [5]. In the present case, this region is a halfstrip with a semiinfinite cut 
parallel to the v axis. The boundary conditions for the function ~(v, 8) are as follows 

0,[, = 0. (7) ~[AB = ~ [ A ' B "  = O, ~]A'DA = q /2 ,  ~ BCB" 
t 

Solv ing  Eq. (6) wi th  the  c o n d i t i o n s  in Eq. (7 ) ,  the  c u r r e n t  f u n c t i o n  i s  found,  and 
then the formula of [5] is used to convert to the variables x, y and the position of the 
boundary r is determined. 

The boundary problem is expediently solved by the straight-line method, preliminarily 
dividing the halfstrip with the cut into a rectangle and two halfstrips. The scheme for 
application of the method was described in [6], for example: the function ~ is written as 
a finite series, and determining the coefficients of this series reduces to solving a sys- 
tem of algebraic equations. Knowing the distance 2s between the source and the sink, the 
dependence of the minimum flow rate on the area of the filtration region is found. 

With linear filtration (s = i), the problem may be precisely solved by means of the 
method of conformal mapping. Comparison with the precise solution allows the relative 
error of calculations by the straight-line method to be estimated. For the ten straight 
lines in the locus region, it is no greater than 3%. The results are shown in Fig. 3 and 
in Table I. The minimum value of the area S/s 2 for the two-dimensional problem is w/2, 
and the desired boundary takes the form of a circle of unit radius touching the ordinate. 
It is evident that, with increase in area of the filtration region, the dependence of the 
minimum flow rate on this area when s = 1 tends to linear form and the influence of the 
exponent s in the filtration law on the flow rate becomes increasingly significant. 

NOTATION 

G, filtration region; r, its unknown boundary; v and v, filtration rate and its modulus; 
h, pressure difference; H, pressure difference at F; q, flow rate; ~ = q/H; n, external nor~ 
mal; x, y, Cartesian coordinates; D u, auxiliary region; 6, q, Cartesian coordinates in Du, 
u = ~ + in; ~, ~, potential and current function; W = # + i~, complex potential; ~, analy- 
tical function; 9, e, its real and imaginary components; 8, angle between velocity vector 
and x axis; K, curvature; p, eccentricity; c, major semiaxis; R, radius of curvature at the 
vertex of the ellipse; Ck, coefficients in series; s, power exponent in filtration law; 
2s distance between boreholes. 
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